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Abstract8

A high-fidelity model of kinetic and equilibrium sorption and diffusion is9

derived and exercised. The gas-diffusion model is coupled with a10

triple-sorption mechanism: Henry’s law absorption, Langmuir adsorption,11

and pooling or clustering of molecules at the higher partial pressures.12

Sorption experiments were conducted previously and span a range of relative13

humidities (0∼95%) and temperatures (30∼60 ◦C). Reaction rates of sorption14

processes and effective diffusivity are determined by minimizing the absolute15

difference between measured and modeled uptakes. Uncertainty16

quantification and sensitivity analysis methods are described and exercised17

here to demonstrate the capability of this modeling approach. Water uptake18

in silica filled- and unfilled-poly(dimethylsiloxane) (PDMS) networks was19

investigated here, however, the model is versatile enough to be used with a20

wide range of materials and vapors.21

22
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Nomenclature24

Symbol Unit Definition Where
α [-] Lumped pooling coefficient Eq. (6)
A0 [cm2] Sample area Eq. (12)
b′ [g mg−1] Langmuir affinity constant kads/kdes Eq. (5)
c [mg cm−3] Vapor concentration in gas phase per unit pore volume Eq. (2)
C [mg g−1] Total vapor concentration per unit of material mass Eq. (1)
CH [mg g−1] Vapor concentration in Henry’s mode per unit of material mass Eq. (3)
C′

H [mg g−1] Langmuir capacity constant per unit material mass Eq. (4)
C0

H [mg g−1] Threshold of Henry’s concentration at which pooling occurs Eq. (10)
CL [mg g−1] Vapor concentration in Langmuir mode per unit material mass Eq. (4)
CP [mg g−1] Vapor concentration in pooling mode per unit material mass Eq. (6)
D [cm2 min−1] Diffusion coefficient Eq. (1)
D0 [cm2 min−1] Diffusivity Eq. (1)
f [mg min] Objective function for system calibration Eq. (11)
H [-] Heaviside step function Eq. (10)
K ′

C [-] Equilibrium constant for clustering reaction Eq. (6)
kads [g min−1mg−1] Adsorption rate Eq. (3)
kdes [min−1] Desorption rate Eq. (3)
kd [cm3 g−1] Henry’s law constant Eq. (6)
λ [mg g−1] Mass uptake per gram of bulk and dry PDMS Eq. (13)
λi [mg g−1] Partial mass uptake per gram of bulk and dry PDMS Eq. (14)
m [mg] Modeled moisture uptake Eq. (11)
m̂ [mg] Measured moisture uptake Eq. (11)
n [-] Pooling-power constant Eq. (6)
φ [cm3 cm−3] Porosity, void volume per unit bulk volume Table 1
φe [cm3 cm−3] Effective porosity contributing to transport Table 2
ρb [g cm−3] Sample bulk density Eq. (12)
RH [-] Relative humidity % Table 4
S [mg g−1] Vapor concentration of empty Langmuir sites Eq. (3)
T [◦C] Temperature Table 1
t [min] Time Eq. (1)
tλ [min] Time required to reach equilibrium Table 4
τ [-] Tortuosity of PDMS Eq. (1)
x [cm] Distance Eq. (1)
xl [cm] PDMS thickness Eq. (13)

25

1. Introduction26

The sorption of vapors and gases into a material is important to consider when assessing27

the transport and permeability of a membrane, especially in non-equilibrium conditions.28

Sorption can retard transport, alter the nature of the material via plasticization, and result29

in outgassing of the vapor at a later time if the surrounding conditions change.30

Accurately and precisely characterizing the sorption and diffusion properties of a vapor31

in a membrane or material, especially a heterogeneous material, is challenging. The two32

processes are material and vapor dependent and occur concomitantly in non-equilibrium33

conditions. The reward for a well-developed and validated model is the ability to characterize34

a variety of materials and predict material response under a range of conditions.35

Recent improvements in the technology for experimentally measuring vapor uptake or36

outgassing have made it easy to collect high-fidelity data. One can extract a great deal37

of information about how a vapor diffuses through and interacts with the material using38

relatively simple models [1,2]. Currently, many researchers rely on established mathematical39

models to analyze and interpret their data [3,4]. These models are easy to use but lack the40
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sophistication and rigor to capture much of the physics that is implicit in the mechanisms41

of diffusion and sorption.42

In this study, we developed a continuum-scale model and a computer code for describing43

the vapor diffusion in a heterogeneous material (e.g., a silica filled polymer). Our model is44

an improvement over published approaches [5,6,7] and is developed on a triple-mode sorp-45

tion mechanisms [8,9], in which Henry’s law absorption, Langmuir adsorption, and pooling46

sorption are coupled. Gas transport in poly(dimethylsiloxane) (PDMS) materials has been47

extensively studied using sorption-diffusion models (e.g., [8, 10-16]). The accurate simula-48

tion of gas sorption and diffusion at the microscale has been a challenge in industrial and49

academic communities due to the complicated pore structure of materials. The most rigor-50

ous approach for dealing with these materials involves solving mass-balance equations at the51

micro or sub-microscopic scale; which is computationally expensive and requires detailed cal-52

culations of the material dynamics (e.g., polymer chain motions etc.). Our treatment using53

continuum-scale models with effective diffusion and sorption is significantly more efficient54

and practical for comparing and interpreting experimental data. Penetrant or vapor-species55

diffusivity is treated as an effective diffusivity (or diffusion coefficient) that captures both56

the interactions of the vapor with the material (e.g., van der Waals interactions) and the57

material-specific tortuosity.58

We have integrated our sorption-diffusion model with an existing code, PSUADE [17]59

to calibrate system parameters and to conduct global sensitivity analysis and uncertainty60

quantification. To the best of our knowledge, no study has included dynamic pooling mecha-61

nisms in the model or expanded the codes to perform uncertainty quantification (UQ). With62

this model, we can rigorously characterize and quantify the sorption and diffusion of vapor63

in heterogeneous materials directly from experimental data and predict these processes for64

realistic scenarios.65

The materials studied here are PDMS polymers, which represent porous and hetero-66

geneous media. PDMS has been widely used as moisture barriers in industry because it67

is nontoxic and relatively hydrophobic [8,16,18-19]. Fillers, such as silica, are frequently68

added to increase mechanical and tear strength, however, these fillers are significantly more69

hydrophilic than the PDMS-matrix resulting in a heterogeneous material [9,20-21]. Our ex-70

periments focus on moisture sorption and diffusion in two different materials: (1) an unfilled-71

and (2) a filled-PDMS network, however, the models developed here are applicable to other72

heterogeneous materials and other penetrant molecules besides water.73

2. Methods74

2.1. Experimental Data75

Experiments measuring the dynamic vapor sorption isotherms in (1) an ideal- (unfilled-)76

and (2) a filled-PDMS network were conducted using the IGAsorp Instrument developed by77

Hiden Isochema. The experiments and instrument are described in detail previously [8,9].78

Briefly, the filled PDMS network contained approximately 25% (wt) silica filler and the79

ideal-PDMS network was a synthesized material free of filler. The isotherms were acquired80

in steps of 5% relative humidity (RH) between 0 and 95% RH at 4 different temperatures81

(30, 40, 50 and 60 ◦C) in the ideal PDMS and at 40 ◦C in the filled PDMS. The sample mass82

was monitored continuously and the sample was considered to be in equilibrium with the83

boundary vapor pressure (i.e., the RH in the sample chamber) when the sorption process84

was 97% complete and the mass change approached an asymptote.85

Five sets of experimental data are used in this work for studying sorption and diffusion86

processes in two PDMS materials (ideal and filled). The sample geometry, properties, and87

experiment setup are given in Table 1.88
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Table 1. Sample properties and experiment setup. Density was estimated using caliper
measurements at room temperature.

Exp. Sample Sample geometry [cm] ρb Time RH T
Length Width Height [g cm−3] [min] [%] [◦C]

1 Ideal PDMS 2.540 1.270 0.202 0.9541 234.95 0∼90.37 30
2 Ideal PDMS 2.540 1.270 0.202 0.9541 221.46 0∼90.46 40
3 Ideal PDMS 2.540 1.270 0.202 0.9541 214.09 0∼90.19 50
4 Ideal PDMS 2.540 1.270 0.202 0.9541 216.10 0∼90.08 60
5 Filled PDMS 2.540 1.270 0.200 1.201 1976.30 0∼95.67 40
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Figure 1. Relative humidity and corresponding mass change in Exp. 2 and Exp. 5 (Table 1) for (a) ideal
and (b) filled PDMS at 40 ◦C.89

Fig. 1 shows the relative humidity and sample mass response for both the ideal and filled90

PDMS at 40 ◦C; one can see clear differences in the mass response of the two materials.91

Most importantly, the filled PDMS sorbs over twenty times more water than that the ideal92

PDMS and takes significantly longer to reach equilibrium at each RH step. In addition, the93

filled PDMS sorbs the most water in the first two RH steps (RH<10%) and high RH steps94

(RH≥75%) whereas the ideal PDMS sorbs nearly the same amount in each RH step.95

Fig. 2 is a plot of sample mass versus RH for each material and provides qualita-96

tive information about the mechanisms of sorption. The linear shape for the ideal-97

PDMS at four temperatures (30, 40, 50, and 60 ◦C in Fig. 2a) suggests that the dom-98

inant mechanisms in this material are diffusion and absorption (i.e., Henry’s law ab-99

sorption). The non-linear relationship in Fig. 2b indicates that moisture sorption is100

dominated by Langmuir and/or pooling mechanisms. In order to quantitatively char-101

acterize the mechanisms of sorption, we have developed a triple-mode sorption model102

coupled with a diffusion model. The model, which is described in Sect. 2.2, includes103

Henry’s law absorption, Langmuir adsorption, and pooling mechanisms. An optimiza-104

tion model for mechanism calibration was developed and is described in Sect. 2.3.105
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Figure 2. Relation between relative humidity and corresponding mass change for (a) ideal PDMS at 30,
40, 50, and 60 ◦C and (b) filled-PDMS at 40 ◦C. Dashed lines are fitted using MATLAB polyfit [22].107

2.2. Sorption-Diffusion Model108

The fundamental equation of gas diffusion coupled with kinetic Langmuir adsorption and109

equilibrium pooling sorption in a material is written110

∂C

∂t
=

∂ (CH + CL + CP)
∂t

= D
∂2CH

∂x2
(1)

where C [mg g−1] is the total concentration in terms of sample bulk mass, CH [mg g−1] is the111

mass concentration of the absorbed (i.e., Henry’s mode) gas component (e.g., water vapor)112

per unit of sample bulk mass, CL and CP [mg g−1] are the concentrations in Langmuir and113

pooling modes, respectively, and measured in mass of gas component per unit bulk mass of114

a material, D [cm2 min−1] is effective diffusion coefficient, t [s] is the time, and x [cm] is the115

distance. The effective diffusion coefficient is the product of molecular-weight dependent116

diffusivity and medium-specific tortuosity, D = D0 τ , where D0 [cm2 min−1] is diffusivity117

and τ [-] is a measure for the connectivity of pores and defined as the chord-arc ratio, which118

is the ratio of the straight distance to the integrated length of the tortuous pathway.119

Our approach involves a single-phase sorption and diffusion rather than multi-phase120

(e.g., liquid and gas-phase) transport. To avoid modeling multiphase transport, Harley121

et al. (2012) [8] directly used Henry’s concentration as a mobile species according to Henry’s122

law sorption model123

CH = kd c, (2)

in which, c [mg cm−3] symbolically represents gas-phase concentration of vapor and CH is124

the concentration of water molecules that are mobile within the material (i.e., absorbed).125

Consequently, the Henry’s law constant, kd, is no longer required as a fitting parameter and126

is left as a fixed parameter in our modeling approach.127

The kinetic adsorption and desorption is expressed as a reversible reaction [8]128

S + CH

kads
⇀↽

kdes

CL (3)

where kads [min−1mg−1g] and kdes [min−1] are adsorption and desorption rates and S [mg129

g−1] is the concentration of empty Langmuir sites. Then, the Langmuir concentration is130

expressed as131

CL = C′
H − S (4)
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where C′
H [mg g−1] is the Langmuir capacity constant (reflecting available reactive surface132

sites).133

Kinetic Langmuir sorption is expressed by differentiating (4)134

∂CL

∂t
= −∂S

∂t
= kdes b′ S CH − kdes (C′

H − S) . (5)

In Eq. (5), b′ = kads/kdes [mg−1g] is Langmuir affinity constant. Equilibrium pooling sorp-135

tion is expressed as a nonlinear function of local concentration in Henry’s mode136

CP =
K ′

C(kdCH)n

n
= α Cn

H, α =
K ′

C kn
d

n
(6)

where K ′
C [-] is equilibrium constant for clustering reaction, kd [g−1 cm3] is Henry’s law137

constant, n represents the number of molecules in each pool and is treated as a fitting138

parameter at continuum scale. The dimension of K ′
C is dependent on n. The mass change139

due to pooling sorption is140

∂CP

∂t
= α n Cn−1

H

∂CH

∂t
. (7)

Substituting Eqs. (5) and (7) in Eq. (1), the system equations are written as141

(
1 + α n Cn−1

H

) ∂CH

∂t
= D

∂2CH

∂x2
− kdes b′ CH S + kdes (C′

H − S) (8)

∂S

∂t
= −kdes b′ S CH + kdes (C′

H − S) . (9)

The pooling concentration is further modified as142

CP = αH
(
CH, C0

H

) (
CH − C0

H

)n (10)

where C0
H is the threshold of Henry’s concentration value, at which pooling sorption occurs,143

H is Heaviside step function (which equals to 1 ∀CH > C0
H and 0 otherwise).144

Equations (8) and (9) are solved by using an operator-splitting method. The diffusion145

operator is discretized using central finite difference accordingly to the sample thickness.146

Then, the algebraic equations are solved using LU factorization with backward substitution.147

Without considering advection, the coefficient matrix is symmetric and positive definite, we148

can use LU factorization without pivoting. The reaction operator, which is designed for149

modeling spatially independent processes, is solved by using MATLAB ode15s [22].150

The mathematical model of vapor diffusion coupled with triple-mode sorption mecha-151

nism is developed as a deterministic simulator to describe water distribution in materials.152

The corresponding computer code is developed and implemented in MATLAB environment153

[22]. As the deterministic simulation provides the physical behavior of sorption and diffu-154

sion processes, the emulation (or response surface) from a certain number of simulations155

approximates the statistic relation between the output of interest and uncertain parame-156

ters, as well as uncertain formulation of physical processes. Then, the emulated model (e.g.,157

in polynomial format) is used in the place of computationally expensive and high-fidelity158

simulator to evaluate objective functions and constraints for system calibration.159

2.3. Surrogate Models for Optimization and Sensitivity Analyses160

Parameter calibration and sensitivity analysis were accomplished, respectively, using161

Shuffled Complex Evolution (SCE) method [27] and sampling-based approach [26]. In the162

sampling-based, or non-intrusive, approach the Latin-Hypercube method [23] is used to gen-163

erate many sample points (i.e., thousands) that sufficiently cover the parametric space. Each164

sample point consists of values for D, Kdes, C′
H, b′, α, Co

H, n, and φe (see Table 3). Note165

that in the diffusion-only model in the ideal PDMS when relative humidity is low (RH <166
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40%), each sample point consisted of values for D and φe only. Each sample point is used167

to parameterize the model described in Sect. 2.2 and an objective function was calculated168

using our code in MATLAB [22]. The sample point with the smallest objective function was169

then used to seed a SCE search.170

In order to investigate a range of possibilities for each input parameter and output result,171

surrogate models are developed to allow for parameter sensitivity analysis and uncertainty172

quantification [24]. In general, the parameter optimization involves running a series of173

simulations within the space of input parameters and searching for the best fit of model to174

experimental data. This SCE approach [27] for high-dimensional and global optimization175

in PSUADE [17] is coupled with our simulator without modifying the simulation code [25].176

The MATLAB [22] version of the simulator is treated as a black box and integrated with177

the PSUADE [17,26] through input and output variables. One thousand sample points are178

generated using the Latin hypercube method [23] to cover (i.e., represent) the parametric179

space and then uncertainties are propagated from model inputs to the output of interest by180

running the simulator repeatedly on those sample points for sensitivity analyses.181

The objective function for our system calibration is defined as182

Minimization f =
∫

t
|m(t) − m̂(t)|dt (11)

where m̂(t) [mg] and m(t) [mg] are measured and modeled mass change of the PDMS sample183

due to diffusion and sorption with184

m(t) = ρbA0

∫ xl

0
(CH + CL + CP) dx (12)

where ρb is the bulk density and A0 is the sample area. The objective function is minimized185

using a selected method from PSUADE [17,26] solution library to find the best fit of model186

to experimental data.187

In the case of sensitivity analysis, the approach is similar but the minimization step is188

omitted. Instead, outputs of simulations (f) on the sample points, are used to construct189

surrogate models in polynomial formats, and global sensitivity analyses are conducted using190

the Sobol’ method [28] which measures the contribution of each uncertain input to the191

variance of the output of interest. The total sensitivity index (TSI) of the output is calculated192

as the sum of all the sensitivity indices including all the interactive effects. Technical details193

of Sobol’ sensitivity approach are given by Saltelli et al. (2008) [29].194

3. Results and Discussion195

Four physical processes were used to model the experimentally measured moisture uptake196

in the ideal- and filled-PDMS networks: diffusion, Henry’s law absorption, Langmuir adsorp-197

tion, and pooling. The relative contribution of each process depends on the topology and198

chemical nature of the material. For example, silica-filler is relatively hydrophilic; hence the199

filled-PDMS network experiences more Langmuir adsorption than the ideal-PDMS. Eight200

uncertain parameters (Tables 3 and 4) are considered in the sorption-diffusion model and201

determined by fitting the model to experimental data. Taking the experimental data as a202

ground truth, we populate sample points in the parametric space and run the simulations203

on sample points for evaluating sensitivities of those parameters to the objective function204

(Eq. (11)). Then, the system parameters are calibrated using the SCE optimization.205

3.1. Ideal PDMS206

3.1.1. Diffusion-Only Model. To verify the simulation code and demonstrate the207

calibration process and sensitivity analysis, we performed simulations on the ideal PDMS208

with the diffusion-only model. When relative humidity is lower than 40%, we believe that209

both Langmuir adsorption and pooling sorption do not take place in the ideal PDMS, hence,210
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the simulation depends on only two uncertain parameters: effective diffusivity and effective211

porosity. In this example, 10,000 sample points are generated on the two-dimensional para-212

metric space, at each temperature, using the Latin hypercube method. Each sample point213

consists of a value for D and a value for φe with ranges of [1.0×10−3 ∼ 4.0×10−3] and [0.010214

∼ 0.022] respectively. Each sample point is simulated with our mathematical model and the215

resulting objective function, f , is calculated.216

Fig. 3 shows a contour plot of the objective function in the space of D and φe. In order217

to better visualize the sensitivity of each parameter, only the 100 best points (i.e., lowest218

1% of objective functions) are plotted (red dots) at each temperature. The dashed lines219

intersect at the sample point with the smallest objective function; this corresponds to the220

D and φe values (Table 2) that are optimized for the best fit of experimental data using221

the SCE method. Fig. 4 shows a comparison of the experimental data with the model using222

the best-fit parameters. One can see an excellent match of model to experimental results at223

every temperature.224

The contour lines and colors in Fig. 3 indicate a long and narrow valley around each225

minimum sample point. One can see that the values for effective porosity span a very226

narrow range at each temperature. This indicates that effective-porosity is a highly sensitive227

parameter and even a small deviation from the optimal value will produce a poor fit of228

the model to the data. In contrast, the diffusivity spans a wide range of values at each229

temperature, which indicates that D is rather insensitive and there is a range of values, all230

of which will produce a reasonably good fit of the model to the experimental data.231

Fig. 5 shows scatter plots of the objective function as a function of each parameter and232

serves as another method of visualizing the data in Fig. 3. One can clearly see that there233

is a wide range of effective diffusivity values that result in similar objective functions and234

therefore the diffusivity is an insensitive parameter. In contrast, the effective porosity comes235

to a sharp point at each temperature and even a small deviation away from the minimum236

results in a significant change in the objective function.237

The Sobol’ sensitivity approach is a quantitative method of assessing parameter sensi-238

tivity. The Sobol’ total sensitivity indices (TSI) provide a ranking for relative sensitivity239

of parameters. The most sensitivity parameter gets the largest TSI value and less sensitive240

parameters have smaller TSI values commensurate with their relative sensitivity. The TSI241

values for this example are listed in parentheses in Table 2 and are consistent with the242

conclusions reached in Figs. 3 and 5.243
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244

Table 2. Optimized diffusivity and effective porosity at various temperatures in ideal PDMS.

Parameter Symbol Calibrated results
30 ◦C 40 ◦C 50 ◦C 60 ◦C

Effective diffusivity D×103 1.0891 (0.0020)1 1.4086 (0.0143) 2.0957 (0.0093) 2.6331 (0.0052)
Effective porosity φe×102 2.1789 (1.0000) 1.6829 (1.0000) 1.3737 (1.0000) 1.1283 (1.0000)
Objective function f 1.7716 1.6947 1.9722 2.4523
1Numbers in parentheses indicate Sobol’ total sensitivity.
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246

3.1.2. Triple-mode Sorption. In order to fit the ideal-PDMS data from 0 to 95%247

RH, our triple-mode sorption model was necessary (Eqs. (8) and (9)). All attempts to fit the248

ideal-PDMS over this range with a diffusion-only model resulted in poor fits. Figs. 6a and249

6c show comparisons of the experimentally measured moisture-mass uptake with the triple-250

mode optimized-model and the diffusion-only optimized-model at 30, 40, 50, and 60 ◦C. The251

relative error for each of these models is also plotted in Figs. 6b and 6d. One can see that252

the triple-mode sorption model (solid lines) overlaps quite well with the experimental data253

(dots) at every RH step and every temperature; only the first RH-step (i.e., 15 to 40 min) at254

all four temperatures shows an imperfect match (with up to 2.6% error) between model and255

experiment (Fig. 6b). This mismatch is likely due to the concentration-dependent diffusivity256

at low relative humidities, which is not considered in this study. In the diffusion-only model257
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(Fig. 6c), the match between experiment and model is reasonably good up to about 75% RH258

(i.e., 180 min) at which point the model can no longer match the experimental data. A plot259

of relative error (Fig. 6d) illustrates the poor match between experiment and model when a260

diffusion-only model is used at a high RH (> 75%).261

A plot of the relative contribution of each mode (see, for example, Fig. 8) reveals that262

Langmuir adsorption makes a negligible contribution to the total mass uptake. Thus, the263

mechanisms of moisture uptake in the ideal-PDMS are Henry’s law absorption and pooling.264

Logically this makes sense, the ideal-PDMS is expected to be hydrophobic and contain no265

hydrophilic filler materials; therefore nothing in the material can adsorb moisture via the266

Langmuir mechanism.267

Fig. 7 shows the model results for total uptake (upper bound of each filled curve) and268

Henry’s absorption (lower bound of each filled curve) at each temperature. The shaded269

region between these two curves is the uptake from pooling. One can see that the Henry’s270

law absorption is responsible for most of the moisture that is sorbed into the material.271

Pooling of water molecules began at about 50% RH (i.e., >120 min).272

Table 3 lists the optimized values for the eight uncertain parameters of the ideal-PDMS273

model at 30, 40, 50, and 60 ◦C (note that kads was not considered as an independent param-274

eter in the optimization process, rather it is calculated here based on the parameters kdes275

and b′). One can see that the optimized Langmuir parameters (i.e., C′
H, b′ and kads) are276

all small values. The pooling threshold value (i.e., C0
H) was optimized at 0.35367, 0.53661,277

0.63559, and 0.74380 [mg g−1], for four temperatures; essentially this parameter indicates278

that pooling initiates when the Henry’s concentration (i.e., CH) exceeds the threshold val-279

ues. These parameters will be discussed in more detail in Sect. 3.2, in comparison with the280

filled-PDMS parameters.281

With the calibrated pooling parameters, the pooling concentration in the ideal PDMS282

is calculated using Eq. (10) with the calibrated α, C0
H, and n in Table 3. The power-law283

relation depends on the difference between Henry’s concentration and the threshold value284

rather than on Henry’s concentration directly.285

Table 3. Optimized parameters at various temperatures in the ideal PDMS.

Parameter Symbol Calibrated results
30 ◦C 40 ◦C 50 ◦C 60 ◦C

Effective diffusivity D 1.5105×10−3 1.8509×10−3 2.5556×10−3 3.6061×10−3

Desorption rate kdes 6.0367×10−4 1.0716×10−4 7.5837×10−5 7.7426×10−5

Langmuir capacity C′
H 5.7306×10−3 8.8910×10−3 1.8440×10−2 1.4551×10−3

Langmuir affinity b′ 1.0093×10−1 8.9940×10−1 8.6285×10−1 7.7043×10−2

Pooling factor α 4.6835×10−1 4.2784×10−1 5.1201×10−1 1.4848×10−1

Pooling threshold C0
H 3.5367×10−1 5.3661×10−1 6.3559×10−1 7.4380×10−1

Pooling power n 1.4128 1.3875 2.1391 1.0881
Effective porosity φe 2.1947×10−2 1.7011×10−2 1.3743×10−2 1.1283×10−2

Adsorption rate kads = b′kdes 6.0925×10−4 9.6380×10−5 6.5436×10−5 5.9948×10−6

Objective function f 2.0791 2.3719 3.3023 3.7254
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Figure 6. Comparison of moisture-mass uptake between calibrated-model results and experimental data
in ideal PDMS at 30, 40, 50, and 60 ◦C. (a) Comparison between modeled and measured uptakes using the
triple-mode sorption model (Eqs. (8) and (9)). (b) Relative error using the triple-mode sorption model. (c)
Comparison between modeled and measured uptake using the diffusion-only model. (d) Relative error using
the diffusion-only model. Each uptake step results from a step up in relative humidity in the chamber, refer
to Fig. 1 for a plot of RH and mass-moisture uptake.

286



13

120 140 160 180 200 220

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (min)

Up
ta

ke
 (m

g)

 

 
30 °C
40 °C
50 °C
60 °C

Figure 7. Comparison of the ideal-PDMS total uptake (upper bound of each filled curve) and Henry’s
absorption (lower bound of each filled curve) at each temperature. The filled area corresponds to the
contribution from pooling; note that pooling sorption starts at high relative humidity.

287

Fig. 8 shows the concentrations (Henry’s, Langmuir, pooling, and total) as functions of288

time at the center of the ideal PDMS sample at 30, 40, 50, and 60 ◦C. Although the total289

concentration at the boundary corresponds well with that of the environmental relative290

humidity (Figs. 1a, b), the total concentration at the center (i.e., depth = 0.1 cm), as shown291

in Fig. 8 shows the time lag due to the diffusion from the boundary to the center. These292

plots highlight the subtle details that can be extrapolated from the experimental data with293

the aid of our high fidelity modeling approach.294
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Figure 8. Concentrations as functions of time at the center of the ideal PDMS sample at (a) 30, (b) 40, (c)
50, and (d) 60 ◦C.295

3.2. Filled PDMS296

Fig. 9 shows a comparison of the experimental and modeled moisture-mass uptake of the297

filled-PDMS using the triple-mode model between 0 and 95% RH. One can see an excellent298

match between the total model (black line) and experimental data (red circles). Each of299

the three sorption modes (Henry, Langmuir, and pooling) is plotted independently in the300

figure. The Langmuir contribution appears to be the dominant sorption mechanism, espe-301

cially at lower humidities; in sharp contrast with the ideal-PDMS network where Langmuir302

adsorption was insignificant. Henry’s law absorption in the sample makes a relatively small303

contribution to the total mass uptake. Pooling mechanisms become active at 75% relative304

humidity. Attempts to fit the filled PDMS results to a diffusion-only model (with effec-305

tive diffusivity and effective porosity only) resulted in extremely poor match of model to306

experiment necessitating the triple-mode model.307

It is observed that the experimental curve changes shape above the 75% RH step. This308

experiment was duplicated and the same response at 75% RH was measured repeatedly.309

One can see in Fig. 9 that above 75% RH the rise time at each RH step is significantly310

slower than the previous RH steps; this suggests that diffusivity is different at these higher311

RHs. Also, above 75% RH, the amount of moisture that is taken up in each RH step is312

substantially larger than the moisture uptake in the lower RH steps; this suggests that the313

pooling mechanism may reduce the tortuosity in the porous medium. It is interesting to314

note that 75% RH is also the point where the Langmuir adsorption reaches its capacity,315
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which suggests that the change in behavior of the material may be due to the Langmuir-316

site saturation. In order to achieve the excellent match of model to experiment that is317

demonstrated in Fig. 9, a reduced tortuosity was introduced at the point when pooling318

started (i.e., above 75% RH), below this point the tortuosity was 1.0. The effective diffusivity319

reported in Table 4 is the value before pooling initiates (i.e., tortuosity = 1, therefore320

D = D0). Once pooling begins, the effective diffusivity can be calculated based on D = D0 τ321

(i.e., effective diffusivity = 8.5003×10−5 = 1.6452 ×10−3×5.1667×10−2). Thus, the reduced322

tortuosity permits the effective diffusivity to decrease in order to match the slow rise-times323

observed above 75/in Fig. 9. As stated above, the filled-PDMS is most likely experiencing324

some change (e.g., swelling and/or plasticization) that results in a change in the mechanisms325

of pooling and diffusion.326

Table 4 (column 5) lists the optimized parameters for the filled-PDMS triple-mode model.327

One can see a striking difference between the filled and ideal-PDMS parameters for Langmuir328

capacity, Langmuir affinity, and desorption rate. The Langmuir capacity of the filled PDMS329

is about 400∼5000 times larger than the ideal-PDMS. These numbers are consistent with the330

fact that the silica-filler in the filled-PDMS is hydrophilic [9,20,21]. The larger desorption331

rate in the filled PDMS is complimented by a large Langmuir affinity (b′). Keeping in mind332

that b′ = kads/kdes, one can calculate kads for the ideal-PDMS (e.g., 9.6380×10−5 at 40 ◦C)333

and filled-PDMS (1.4240×10−1) and see that the filled-PDMS adsorbs and desorbs moisture334

at a high rate compared with the ideal-PDMS. In other words, moisture in the filled-PDMS335

is constantly being attracted and van der Waals bonded to the silica filler although the336

desorption rate is high, the adsorption rate is even higher resulting in a large population337

of water molecules that are adsorbed into the material. The diffusivity is nearly the same338

in the filled and ideal-PDMS materials, this makes sense since both materials consist of a339

similar hydrophobic polymeric network.340

Finally, the pooling parameters in ideal- and filled-PDMS are different from each other,341

which is not surprising considering the different chemical and mechanical properties of the342

materials. In addition, the Sobol’ sensitivity analysis of the objective function (Eq. 11) in343

terms of all parameters on the filled PDMS network showed that the effective porosity (φe)344

and the pooling threshold (C0
H) are the most important of all the parameters. Hence, the345

differences in pooling parameters between the ideal- and filled-PDMS are expected to have346

very little impact on the overall model outcome. With the calibrated pooling parameters in347

Table 4 (column 5), the pooling concentration in the filled PDMS is specified using Eq. (10).348

Table 4. Filled-PDMS parameters: input ranges, calibrated values, and Sobol’ sensitivities of experiment
5.

Parameter Symbol Min Max Optimized Sobol’ TSI TSI rank
Effective diffusivity D 1.0×10−4 3.2×10−3 1.6452×10−3 1.7160×10−4 8
Desorption rate kdes 1.0×10−2 1.0×10−1 5.4505×10−2 4.9072×10−5 9
Langmuir capacity C′

H 5.0 9.0 7.3054 2.6169×10−2 3
Langmuir affinity b′ 1.0 1.0×101 2.6126 9.7824×10−3 4
Pooling factor α 1.0×101 1.5×101 1.2583×101 4.7434×10−3 5
Pooling threshold C0

H 1.24 3.0 1.8580 5.1070×10−1 2
Pooling power n 1.0 1.24 1.0180 2.3161×10−3 7
Effective porosity φe 5.0×10−2 1.0×10−1 6.1812×10−2 5.1852×10−1 1
Reduced tortuosity τ 2.7×10−2 8.5×10−1 5.1667×10−2 2.4485×10−3 6
Adsorption rate kads = b′kdes - - 1.4240×10−1 - -
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Figure 9. Comparison of moisture-mass uptake between calibrated model results and experimental data
in the filled-PDMS. Each uptake step results from a step up in relative humidity of the chamber, refer to
Fig. 1b for a plot of RH and mass/moisture uptake.

349

Fig. 10 shows the Henry, Langmuir and pooling concentrations as functions of time at the350

boundary and the center of filled PDMS. One can see how fast the boundary concentration351

plot (Fig. 10a) responds to the change of the chamber-environment RH (Fig. 1b). In contrast,352

the concentration curves at the center (Fig. 10b) show the time lag due to the diffusion from353

the boundary to the center. These plots highlight the subtle details that can be extrapolated354

from the experimental data with the aid of our high fidelity modeling approach.355
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Figure 10. Concentration as a function of time at (a) boundary and (b) center of filled PDMS.356

3.3. Uncertainty Quantification of Decision Variables357

Uncertainty quantification is an important, although often omitted, step in predictive358

modeling. In Sections 3.1 and 3.2 the calibration parameters were optimized and a Sobol’359

sensitivity analysis was performed on them. Throughout that analysis, we assumed that360
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the RH and sample thickness were well defined and free of uncertainty. In reality, both RH361

and thickness are variables that will affect the outcome of the mass-uptake calculations and362

their uncertainties must be accounted for. We have termed these variables decision-variables363

and here we investigate the impact of uncertainties of these decision-variables on the mass364

uptake.365

For a given relative humidity and a PDMS thickness, mass uptake asymptotically con-366

verges to an equilibrium level due to vapor diffusion and triple-mode sorption. To quantify367

the equilibrium uptake as a function of relative humidity and thickness, we measure the368

ratio of the uptake [mg] to the initial mass of dry PDMS [g]:369

λ =
∫ xl

0 (CH + CL + CP) dx

xl
(13)

where xl [cm] is the PDMS thickness. λ is a measure of concentration and reflects the370

sorbed mass in milligram per gram of dry PDMS. The equilibrium time required to reach371

equilibrium is measured as tλ when dλ/dt ≤ 1.0×10−4, which is estimated to be the point372

where the system has reached equilibrium.373

We explored the impact of these two decision variables by creating an array of 1000374

sample points in the space of RH and thickness (i.e., 1000 different combinations of RH375

and thickness). The model was run 1000 times using optimized parameters of the ideal-376

PDMS at 40 ◦C (Column 4 of Table 2). The procedure was repeated with the filled-PDMS377

optimized parameters listed in Table 4 and an array of 1000 sample points appropriate for378

the filled-PDMS system. The results are discussed below.379

3.3.1. Equilibrium Uptake of Ideal PDMS. The dependence of the mass ratio, λ,380

and equilibrium time, tλ, on PDMS thickness and relative humidity are plotted in Fig. 11.381

One can see in Fig. 11a that there is a range of mass ratios that will result when the thickness382

is varied, with no evident trend. This plot demonstrates that the mass ratio is not influenced383

by the thickness; this is as it should be, the material is truly reaching equilibrium. Fig. 11b384

shows a strong dependence of mass ratio on relative humidity; this conclusion is logical since385

one would expect the sample to sorb more water when the relative humidity is higher. The386

linear relation between the equilibrium uptake ratio and relative humidity for RH≤ 60%387

in Fig. 11b reflects the Henry’s absorption. The slight nonlinear behavior for RH> 60%388

is due to the pooling sorption. Figs. 11c and 11d indicate that the equilibrium time is389

mainly controlled by the thickness with no strong influence by the relative humidity. Again,390

these results are logical, since a thicker sample will take longer to reach equilibrium due to391

diffusion. A Sobol’ global sensitivity analysis of the results quantifies the contributions of392

relative humidity and thickness to both λ and tλ (see Table 5). In addition to the plots, which393

qualitatively show the dependencies, the Sobol’ analysis provides a quantitative measure for394

interpreting the results.395

Table 5. Sobol’ sensitivity indices of relative humidity and PDMS thickness to equilibrium uptakes.

PDMS Output PDMS thickness (cm) Relative humidity
First-order Total sensitivity index First-order Total sensitivity index

Ideal λ 1.0019×10−7 1.7730×10−6 9.9387×10−1 1.1013
tλ 8.6891×10−2 9.8944×10−1 8.7546×10−3 9.0231×10−3

Filled λ 1.5276×10−4 7.2003×10−4 1.0000 1.0981
tλ 9.9621×10−2 7.1617×10−1 2.7599×10−1 1.2668
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Figure 11. Scatter plots of the dependence of the equilibrium uptake and the time to reach the equilibrium
in ideal PDMS. (a) Mass ratio, λ, as a function of PDMS thickness. (b) Mass ratio, λ, as a function of
relative humidity. (c) Equilibrium time, tλ, as a function of PDMS thickness. (d) Equilibrium time, tλ, as
a function of relative humidity.

396

3.3.2. Equilibrium Uptake of Filled-PDMS. Fig. 12 shows the dependence of the397

equilibrium uptake mass ratio, λ, and equilibrium time, tλ, on sample thickness and relative398

humidity in the filled PDMS. Comparison of Figs. 12a and 12b reveal no dependence of mass399

ratio, λ, on sample thickness but a strong dependence on relative humidity. Fig. 12b also400

demonstrates the nonlinear process due to the dominant Langmuir adsorption in the filled401

PDMS and a dramatic change in the curve in Fig. 12b which corresponds to the point when402

pooling begins (see Fig. 13b).403

Figs. 12c and 12d indicate that both thickness and RH influence the equilibrium time.404

Fig. 12c indicates that when the sample gets very thick there is a minimum equilibration405

time, presumably due to diffusion, which will be retarded by the Langmuir and pooling406

sorption processes. Fig. 12d shows that at the lower relative humidities there is a minimum407

time to reach equilibrium. The sorption process in the filled-PDMS at these humidities is408

dominated by Langmuir adsorption, which is not instantaneous since (1) a water molecule409

must locate a Langmuir sorption site and (2) a van der Waals bond must be formed. Hence at410

low RH, there is some minimum time required to reach equilibrium as the small population411

of water molecules locate Langmuir sorption sites. As the RH increases, the probability of a412

water molecule to locate a Langmuir site increases and the time to reach equilibrium drops.413

Sobol’ global sensitivity analysis (Table 5) quantifies the relative importance of thickness414

and RH to the mass ratio and equilibrium time for the filled-PDMS.415
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Figure 12. Scatter plots of the dependence of the equilibrium uptake and the time to reach the equilibrium
in filled-PDMS. (a) Mass ratio, λ, as a function of PDMS thickness. (b) Mass ratio, λ, as a function of
relative humidity. (c) Equilibrium time, tλ, as a function of PDMS thickness. (d) Equilibrium time, tλ, as
a function of relative humidity.

416

In order to determine how RH and sample thickness influence the mass-ratio of each417

sorption mechanism, the partial ratio of equilibrium uptake for each sorption mode was418

defined419

λi =
∫ xl

0 Cidx

xl
, i = H, L, P (14)

and measured as functions of relative humidity and PDMS thickness as shown in Fig. 13. In420

Fig. 13a one can see that the distribution of mass-ratio values range from 0 to approximately421

2.5 [g mg−1] for the Henry absorption but span the full range from 0 to 6.5 [g mg−1] for422

the Langmuir and pooling mechanisms. This trend is expected as there is only a small423

population of water that resides in the material via Henry’s absorption. Other than the424

maximum sorption capacity for each mechanism, there is no trend between thickness and425

mass-ratio of sorbed water. In contrast, there is a strong trend in the mass-ratio and the426

RH, as is shown in Fig. 13b.427



20

10−3 10−2 10−1 100
0

1

2

3

4

5

6

7
h

Thickness (cm)

(a)

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

h

Relative humidity (%)

(b)

 

 
Henry
Langmuir
Pooling

Figure 13. Partial ratios of equilibrium uptake as functions of (a) PDMS thickness and (b) relative humidity.428

4. Conclusions429

Modeling of the vapor sorption and diffusion in a material is a challenging problem with430

a range of applications. Most models are limited to a narrow range of humidities and are431

unable to model dynamic sorption and diffusion processes. The improvements in experimen-432

tal methods for measuring vapor-uptake have made it possible and necessary to extend our433

modeling capabilities. A model that can capture both dynamic and equilibrium sorption434

of a vapor is quite useful for characterizing and understanding the nature of the material435

and extremely useful for predicting the uptake and/or outgassing quantities and rates in436

non-equilibrium conditions.437

The model presented here was exercised and verified with a simple, established, and well438

characterized material and vapor: poly(dimethylsiloxane) (PDMS) and water, respectively.439

Two different PDMS materials were investigated, a silica filled-PDMS and an ideal-PDMS440

(i.e., unfilled). Vapor diffusion coupled with Henry’s law absorption, Langmuir adsorption,441

and pooling sorption in ideal and filled-PDMS materials were systematically calibrated using442

experimental data and SCE global optimization. Triple-mode sorption processes, including443

kinetic Langmuir adsorption, equilibrium Henry’s law absorption and pooling sorption, were444

modeled, coupled with diffusion equation, and solved using an operator-splitting scheme.445

The deterministic but physics-based simulation is further coupled with PSUADE, an uncer-446

tainty quantification tool, for calibrating uncertain system processes and parameters. Using447

this solution scheme together with experimental data, we highlight the following insights:448

1. Kinetic Langmuir adsorption, equilibrium Henry’s absorption, and pooling sorption449

can be distinguished and formulated at the continuum scale.450

2. Effective diffusivity can be treated as a product of molecular-weight-dependent binary451

diffusivity and material-specific tortuosity and calibrated using the total uptake mea-452

surement. The calibrated effective diffusivity in the ideal and filled PDMS is close to453

the value derived by Watson and Baron (1996) [30].454

3. As a power-law function of Henry’s concentration, pooling concentration depends on455

a threshold value of Henry’s concentration. When Henry’s concentration exceeds the456

threshold value, pooling occurs and its concentration is a power-law function of the457

difference between Henry’s concentration and the threshold.458

4. In addition to diffusion, Henry’s absorption is the dominant physical process for the459

total uptake in the ideal PDMS, while Langmuir adsorption is the major contributor460

to the uptake in filled PDMS when boundary relative humidity is below 75.36%.461
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5. In the filled PDMS, pooling initiates and becomes the dominant sorption process after462

Langmuir concentration asymptotically converges to its equilibrium (RH > 75.36%).463

The effective diffusivity is significantly reduced at this critical point.464

The model developed here was designed to succeed with a variety of membranes or ma-465

terials and vapors and work is underway to characterize other materials of interest to the466

scientific and engineering communities. Our results demonstrate how the model can be used467

and the parameters that can be extracted from the experimental results. Our sensitivity468

analysis and uncertainty quantification are particularly unique and empower us to explore a469

range of outcomes without laborious experiments or changes to the model. With this math-470

ematical model and parameters, one can predict the uptake or outgassing of a material or471

an assembly of materials in a realistic geometry. Thus, predicting a realistic timeframe for472

a vapor to outgas from or sorb into a material can be achieved with simple experiments and473

this sophisticated model. Applications range from predicting vapor intrusion rates through474

protective or separation membranes to predicting vapor desorption and outgassing from a475

membrane that has experienced a change in environmental conditions.476

Acknowledgements477

This work was conducted under the auspices of the U.S. Department of Energy by478

Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.479

References480

[1] V. Detallante, D. Langevin, C. Chappey, R. Métayer, M. Mericier, M., Pinéri, Water481

vapor sorption in naphtalenic sulfoanted polyimide membranes, J.Membr. Sci. 190 (2001)482

227–241.483

[2] V. Detallante, D. Langevin, C. Chappey, R. Métayer, M. Mericier, M. Pinéri, Kinetics484

of water vapor sorption in sulfonated polyimide membranes, Desalination 148 (2002)485

333–339.486

[3] G.S. Park, J. Crank, Diffusion in polymers Academic Press Publisher, New York, pp.487

452, 1968.488

[4] J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, NY, pp. 414,489

1979.490

[5] V. Stannet, The transport of gases in synthetic polymeric membranes, an historic per-491

spective, J. Membr. Sci. 3(2) (1978) 97–115.492

[6] W.J. Koros, D.R. Paul, CO2 sorption in poly(ethylene terephthalate) above and below493

the glass transition, J.Polym. Sci. 16(11) (1978) 1947–1963.494

[7] W.R. Vieth, J.M. Howell, J.H. Hsieh, Dual sorption theory, J. Membr. Sci. 1 (1976)495

177–220.496

[8] S.J. Harley, E.A. Glascoe, R.S. Maxwell, Thermodynamic study on dynamic water vapor497

sorption in sylagrd-184, J. Phys.Chem. 116 (2012) 14183–14190.498

[9] S.J. Harley, E.A. Glascoe, J.P. Lewicki, R.S. Maxwell, Advances in modeling sorption499

and diffusion of moisture in porous reactive materials, Chem. Phys.Chem. 15(9) (2014)500

1809–1820.501

[10] E. Favre, P. Schaetzel, Q.T. Nguygen, R. Clément, J. Néel, J., Sorption, diffusion and va-502
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